Biologia Molecular

Caracterização molecular dos ácidos nucléicos

As células vivas são capazes de preservar e de transferir a informação genética para as novas gerações por meio da complementaridade estrutural das moléculas de ácidos nucléicos: o DNA e o RNA. A unidade básica tanto do DNA como do RNA são polímeros de subunidades monoméricas, denominadas nucleotídeos, que estão arranjados em sequência precisa.

Em organismos eucarióticos (cujas células apresentam-se organizadas com membrana, citoplasma e núcleo), o DNA é encontrado no núcleo das células e também nas mitocôndrias e nos cloroplastos. As moléculas de DNA e de RNA consistem de apenas quatro tipos de nucleotídeos.

Os nucleotídeos são compostos precursores da síntese dos ácidos nucléicos que contém um grupo fosfato, uma pentose (molécula de açúcar com cinco carbonos) e uma base nitrogenada. Durante o processo de polimerização do ácido nucléico, a ligação de um nucleotídeo à cadeia em extensão ocorre pela ação nucleofílica de uma hidroxila da pentose (3’-OH), do resíduo de nucleotídeo mais externo da cadeia, sobre o fosfato alfa ligado ao carbono 5` da pentose (5`-PO4) do nucleotídeo que será incorporado, resultando na liberação de um íon difosfato. A pentose que compõe o RNA é sempre a ribose e o DNA, a desoxirribose.

As bases adenina, guanina e citosina são encontradas tanto nas moléculas de DNA como de RNA, enquanto timina aparece exclusivamente nas moléculas de DNA e uracila, nas de RNA. Tanto o DNA quanto o RNA são utilizados na pesquisa, dependendo, principalmente, do objetivo de cada trabalho. O DNA apresenta diferentes sequências de nucleotídeos, que formam diferentes unidades, conhecidas por genes. O gene é definido como o segmento de DNA que codifica a informação requerida para a produção de determinado polipeptídeo ou de um segmento de RNA. Formas alternativas dos genes são denominados alelos e a totalidade do DNA presente na célula é chamada de genoma. Os genes estão organizados em cromossomos e a sua posição no cromossomo é denominada lócus.


Na maioria dos organismos, chamados diplóides, cada célula contém duas cópias de cada tipo de cromossomo. Nestes organismos, cada indivíduo possui dois alelos para cada lócus, um originário da mãe e outro do pai. Se os dois alelos de um lócus não podem ser diferenciados pela sua seqüência de nucleotídeos, ele é chamado de homozigoto para o lócus considerado; e, caso contrário, ele é denominado heterozigoto. O princípio da segregação estabelece que cada célula reprodutiva originária de indivíduos heterozigotos contém apenas um dos dois alelos, enquanto as demais células contém os dois alelos em igual freqüência.

Em seu estado nativo, o DNA apresenta-se arranjado em dupla hélice, com as fitas das sequências complementares ligadas entre si por pontes de hidrogênio entre as bases nitrogenadas. O DNA de todas as bactérias (organismos procarióticos) e de muitos vírus são arranjados de forma circular. O cromossomo da Escherichia coli contém cerca de 0,0044 picogramas de DNA, cerca de 4 x 106 pares de bases que codificam cerca de 3.300 proteínas diferentes. Os seres humanos apresentam ao redor de três bilhões de pares de bases que codificam de 50 a 100 milhares de genes em 24 cromossomos. Os vírus apresentam quantidade reduzida de informação genética, quando comparados aos organismos celulares, porque usam recursos da célula hospedeira para se reproduzir. Apesar do tamanho relativamente pequeno da informação genética contida em bactérias e vírus, o DNA desses organismos precisa ser compactado para que possa ser contido nessas células.

Com base nas características estruturais dos ácidos nucléicos, algumas técnicas moleculares são utilizadas na manipulação do DNA dos organismos. A hibridização é a técnica que se baseia na complementaridade entre as fitas de DNA. Um fragmento de DNA marcado por uma substância radioativa é usado como sonda para determinar a presença da fita complementar em uma amostra específica. Essa técnica foi muito utilizada em testes de diagnóstico, porém, atualmente em consequência de sua baixa sensibilidade e de problemas advindos do uso de radioatividade, ela caiu em desuso. A clivagem é outra técnica que pode facilitar a manipulação do DNA. Para esse fim, existem as chamadas enzimas de restrição, que são capazes de cortar o DNA em sítios específicos, definidos geralmente pela seqüência de bases distribuídas ao longo da molécula, produzindo fragmentos de comprimento menor. As enzimas de restrição são sintetizadas naturalmente por muitas bactérias e centenas (com especificidade para diferentes sítios de restrição) estão disponíveis comercialmente. Outros tipos de manipulação de DNA incluem a amplificação (utilizando a técnica de PCR) e a eletroforese.

Fonte: Embrapa

Artigo por: Raphael Gonçalves Nicésio

Os artigos do blog são destinados a estudantes, profissionais e pessoas que se interessam pela biomedicina e demais áreas da saúde. O conteúdo não visa substituir as orientações de um médico, portanto não deve ser utilizado para autodiagnóstico ou automedicação.

Licença Creative Commons
Esta publicação está licenciada com uma Licença Creative Commons Atribuição-NãoComercial-SemDerivações 4.0 Internacional. Não é permitido duplicar, copiar ou reproduzir qualquer parte sem autorização prévia.
2007-2016. Biomedicina Brasil. Tecnologia do Blogger.