Pular para o conteúdo principal

Nanotecnologia

Há mais de 2.500 anos, alguns filósofos gregos se perguntavam se a imensa variedade do mundo que nos cerca não pode ser reduzida a componentes mais simples. A própria palavra átomo vem daquele tempo e significa "indivisível". A última fração da matéria, segundo esses filósofos, o "tijolo" fundamental de tudo o que existe, não poderia mais ser dividida em outras partes mais simples.
Entre os gregos e a nossa época, muito se aprendeu sobre o universo. Sabemos, hoje, que o mundo que nos é familiar é formado por átomos, não exatamente aqueles imaginados inicialmente, mas que com eles compartilham o papel de "tijolos" fundamentais. Aprendemos que, ao contrário do que diz seu nome, eles são, de fato, divisíveis.
Os átomos são formados por um núcleo positivo, onde reside praticamente toda sua massa, e por elétrons, negativos, que circulam em torno do núcleo. Sabemos, também, que ocorrem naturalmente no universo apenas 92 tipos de átomos diferentes. Estes tipos podem ser classificados pelo número de prótons (partículas sub-atômicas de carga elétrica positiva) contidos em seus núcleos. Sabemos ainda que esses átomos podem não ser o fim da história, pois pode haver no universo partículas ou alguma forma de energia ainda não descobertas - ou pode ser que nossas teorias sobre o universo precisem algum dia serem revisadas, se esses novos "ingredientes" não forem encontrados.
A certeza científica de que tudo é feito de átomos é muito recente. Há apenas cerca de cem anos, os cientistas obtiveram evidências fortes de que a velha hipótese atômica, formulada há dois milênios e meio, corresponde à realidade da natureza. No decorrer do século XIX, os químicos foram, aos poucos se convencendo de que a melhor maneira de explicar quantitativamente reações químicas é supondo que essas se dão entre unidades bem definidas de cada composto. Alguns físicos, já quase no final do século XIX, formularam uma teoria "estatística" da matéria, na qual se busca explicar o comportamento dos corpos com os quais lidamos cotidianamente pelo comportamento dessas pequenas unidades "invisíveis" da matéria, os átomos e as moléculas (moléculas são átomos do mesmo tipo ou de tipos diferentes, fortemente ligados entre si, formando novas entidades, com propriedades físico-químicas distintas). Essas teorias foram recebidas, inicialmente, com grande ceticismo pela própria comunidade científica. Por que tanta dificuldade para aceitar uma idéia velha de milênios?
Microscópio de Tunelamento
O problema é que átomos são muito pequenos, medem menos de um centésimo de bilionésimo de metro, e obedecem a leis físicas bastante diferentes daquelas com as quais estamos acostumados no nosso mundo familiar. O seu tamanho é tal que não podem ser vistos diretamente. Instrumentos especiais tiveram de ser desenvolvidos antes que fosse possível "ver" um átomo. Um dos mais práticos desses instrumentos, o microscópio de tunelamento, somente foi inventado na década de 1980. Seus inventores, Heinrich Rohrer e Gerd Binnig, dos laboratórios da IBM em Zürich, Suíça, ganharam o prêmio Nobel por seus trabalhos. O funcionamento desse microscópio depende das leis da mecânica quântica, que governam o comportamento dos átomos e moléculas. Portanto, a existência de átomos e as leis da natureza no mundo atômico tiveram de ser pacientemente descobertas a partir de experimentos especialmente concebidos. Este processo levou décadas e envolveu grandes cientistas. Instrumentos como o microscópio de tunelamento e outros estendem nossa "visão" até tamanhos na faixa de bilionésimo de metro. Um bilionésimo de metro chama-se "nanômetro", da mesma forma que um milésimo de metro chama-se "milímetro". "Nano" é um prefixo que vem do grego antigo e significa "anão".
Ainda antes dos cientistas desenvolverem instrumentos para ver e manipular átomos individuais, alguns pioneiros mais ousados se colocavam a pergunta: o que aconteceria se pudéssemos construir novos materiais, átomo a átomo, manipulando diretamente os tijolos básicos da matéria? Um desses pioneiros foi um dos maiores físicos do século XX: Richard Feynman. Feynman, desde jovem, era reconhecido como um tipo genial. Uma de suas invenções foi o primeiro uso de processadores paralelos do mundo. Em Los Alamos, na época do desenvolvimento da primeira bomba nuclear, havia a necessidade de se realizarem rapidamente cálculos muito complexos. Feynman, então, teve a idéia de dividir os cálculos em operações mais simples, que podiam ser realizadas simultaneamente, e encheu uma sala com jovens secretárias, cada qual operando uma máquina de calcular (naquela época não havia computadores, nem calculadoras eletrônicas, e as contas tinham de ser feitas à mão, ou com calculadoras mecânicas limitadas às mais simples operações aritméticas).

Nanopartícula

Hoje em dia, essa mesma idéia é usada em computadores de alto desempenho, com microprocessadores. Em 1959, em uma palestra no Instituto de Tecnologia da Califórnia, Feynman sugeriu que, em um futuro não muito distante, os engenheiros poderiam pegar átomos e colocá-los onde bem entendessem, desde que, é claro, não fossem violadas as leis da natureza. Com isso, materiais com propriedades inteiramente novas, poderiam ser criados. Esta palestra, intitulada "Há muito espaço lá embaixo" é, hoje, tomada como o ponto inicial da nanotecnologia. A idéia de Feynman é que não precisamos aceitar os materiais com que a natureza nos provê como os únicos possíveis no universo. Da mesma maneira que a humanidade aprendeu a manipular o barro para dele fazer tijolos e com esses construir casas, seria possível, segundo ele, manipular diretamente os átomos e a partir deles construir novos materiais que não ocorrem naturalmente. Um sonho? Talvez, há quarenta anos atrás. Mas, como o próprio Feynman dizia em sua conferência, nada, nesse sonho, viola as leis da natureza e, portanto, é apenas uma questão de conhecimento e tecnologia para torná-lo realidade. Hoje, qualquer toca-disco de CD's é uma prova da verdade do que Feynman dizia. Os materiais empregados na construção dos lasers desses toca-discos não ocorrem naturalmente, mas são fabricados pelo homem, camada atômica sobre camada atômica.
O objetivo da nanotecnologia, seguindo a proposta de Feynman, é o de criar novos materiais e desenvolver novos produtos e processos baseados na crescente capacidade da tecnologia moderna de ver e manipular átomos e moléculas. Os países desenvolvidos investem muito dinheiro na nanotecnologia. Mais de dois bilhões de dólares por ano, se somarmos os investimentos dos Estados Unidos, Japão e União Européia. Países como Coréia do Sul e Taiwan, que têm sido muito melhor sucedidos que o Brasil na utilização de tecnologias modernas para gerar bons empregos e riquezas para seus cidadãos, também estão investindo centenas de milhões de dólares nessa área.
Nanotecnologia não é uma tecnologia específica, mas todo um conjunto de técnicas, baseadas na Física, na Química, na Biologia, na ciência e Engenharia de Materiais, e na Computação, que visam estender a capacidade humana de manipular a matéria até os limites do átomo. As aplicações possíveis incluem: aumentar espetacularmente a capacidade de armazenamento e processamento de dados dos computadores; criar novos mecanismos para entrega de medicamentos, mais seguros e menos prejudiciais ao paciente dos que os disponíveis hoje; criar materiais mais leves e mais resistentes do que metais e plásticos, para prédios, automóveis, aviões; e muito mais inovações em desenvolvimento ou que ainda não foram sequer imaginadas. Economia de energia, proteção ao meio ambiente, menor uso de matérias primas escassas, são possibilidades muito concretas dos desenvolvimentos em nanotecnologia que estão ocorrendo hoje e podem ser antevistos.

Língua eletrônica (EMBRAPA).
Fonte: www.cnpdia.embrapa.br

No Brasil, a nanotecnologia ainda está começando. Mas, já há resultados importantes. Por exemplo, um grupo de pesquisadores da Embrapa, liderados pelo Dr. L. H. Mattoso, desenvolveu uma "língua eletrônica", um dispositivo que combina sensores químicos de espessura nanométrica, com um sofisticado programa de computador para detectar sabores. A língua eletrônica da Embrapa, que ganhou prêmios e está patenteada, é mais sensível do que a própria língua humana. Ela é um produto nanotecnológico, pois depende para seu funcionamento da capacidade dos cientistas de sintetizarem novos materiais e de organizá-los, camada molecular por camada molecular, em um sensor que reage eletricamente a diferentes produtos químicos.
Aplicações em catálise, isto é, na química e na petroquímica, em entrega de medicamentos, em sensores, em materiais magnéticos, em computação quântica, são alguns exemplos da nanotecnologia sendo desenvolvida no Brasil. A nanotecnologia é extremamente importante para o país, por que a indústria brasileira terá de competir internacionalmente com novos produtos para que a economia se recupere e retome o crescimento econômico. Esta competição somente será bem sucedida com produtos e processos inovadores, que se comparem aos melhores que a indústria internacional oferece. Isto significa que o conteúdo tecnológico dos produtos ofertados pela indústria brasileira terá de crescer substancialmente nos próximos anos e que a força de trabalho do país terá de receber um nível de educação em Ciência e Tecnologia muito mais elevado do que o de hoje. Este é um grande desafio para todos nós.

Autor: Cylon Gonçalves da Silva - físico, ex-diretor do Laboratório Nacional de Luz Síncrotron e idealizador do Centro Nacional de Referência em Nanotecnologia.

Comentários

Artigos populares

Tubos para coleta de sangue

Os tubos de coleta de sangue são estéreis, feitos de vidro ou plástico e alguns possuem vácuo. Comumente utilizados em punções venosas, eles são projetados para a coleta, transporte e processamento das amostras.

O interior destes tubos pode ser revestido com anticoagulantes e as vedações preservam a integridade da amostra até a chegada ao laboratório. Embora não seja necessário ao coletor conhecer todos os detalhes sobre os procedimentos analíticos dos testes hematológicos, é essencial conhecer o tipo de amostra necessária para cada análise.


Tipo de Análise - Tipo de Amostra Bioquímica e Sorologia - Soro ou plasma Hematologia - Sangue total com EDTA Glicemia - Plasma com fluoreto de sódio Coagulação - Plasma com citrato de sódio
Tubos para coleta
A amostra deve ser coletada em tubos específicos para cada tipo de análise, sendo de extrema importância conhecê-los para a realização correta do exame. O material colhido em recipiente inadequado será rejeitado e descartado pelo laboratório p…

Conheça os principais meios de cultura

O crescimento dos microrganismos nos diferentes meios de cultura utilizados fornece as primeiras informações para a sua identificação. É importante conhecer o potencial de crescimento de cada meio de cultura e adequar ao perfil bacteriano esperado para cada material.


Alguns procedimentos são essenciais na hora da preparação de cada meio de cultura para a obtenção de melhores resultados e evitar contaminações, como nos diferentes casos: quando distribuir o meio antes de autoclavar, os tubos não precisam estar esterilizados; quando distribuir o meio após a autoclavação, os tubos, frascos, placas, pipetas e vidrarias ou materiais auxiliares obrigatoriamente devem ser estéreis e os meios devem ser autoclavados com as tampas semi-abertas, para que a esterilização seja por igual em todo o conteúdo dos tubos - tampas fechadas não permitem a entrada do vapor.

Ágar nutriente (AN)

Meio relativamente simples, de fácil preparo e barato, muito usado nos procedimentos do laboratório de microbiologi…

Vírus Epstein-Barr

O vírus Epstein-Barr, frequentemente referido como EBV, é um membro da família dos herpesvírus e um dos mais comuns nos humanos. O vírus ocorre em todo o mundo, e a maioria das pessoas é infectada com EBV em algum momento durante suas vidas.


Crianças tornam-se suscetíveis ao EBV tão logo a proteção de anticorpos maternos (presente no nascimento) desaparece. Muitas crianças são infectadas com EBV, e essas infecções geralmente não causam sintomas ou são indistinguíveis. Nos países desenvolvidos, muitas pessoas não estão infectadas com EBV na infância. Quando a infecção com EBV ocorre durante a adolescência ou na idade adulta jovem, provoca a mononucleose infecciosa em 35% a 50% dos casos.

Os sintomas da mononucleose infecciosa são febre, dor de garganta e aumento dos gânglios linfáticos. Às vezes, há o envolvimento do fígado e do baço. Problemas cardíacos ou envolvimento do sistema nervoso central ocorrem raramente, e a mononucleose infecciosa quase nunca é fatal. Não há associações co…